rtoss - Blame information for rev 79

Subversion Repositories:
Rev:
Rev Author Line No. Line
74 roytam 1 /*
2  * QEMU ETRAX Ethernet Controller.
3  *
4  * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24  
25 #include <stdio.h>
26 #include "hw.h"
27 #include "net.h"
28 #include "etraxfs.h"
29  
30 #define D(x)
31  
32 /* Advertisement control register. */
33 #define ADVERTISE_10HALF        0x0020  /* Try for 10mbps half-duplex  */
34 #define ADVERTISE_10FULL        0x0040  /* Try for 10mbps full-duplex  */
35 #define ADVERTISE_100HALF       0x0080  /* Try for 100mbps half-duplex */
36 #define ADVERTISE_100FULL       0x0100  /* Try for 100mbps full-duplex */
37  
38 /*
39  * The MDIO extensions in the TDK PHY model were reversed engineered from the
40  * linux driver (PHYID and Diagnostics reg).
41  * TODO: Add friendly names for the register nums.
42  */
43 struct qemu_phy
44 {
45         uint32_t regs[32];
46  
47         int link;
48  
49         unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
50         void (*write)(struct qemu_phy *phy, unsigned int req,
51                       unsigned int data);
52 };
53  
54 static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
55 {
56         int regnum;
57         unsigned r = 0;
58  
59         regnum = req & 0x1f;
60  
61         switch (regnum) {
62                 case 1:
63                         if (!phy->link)
64                                 break;
65                         /* MR1.  */
66                         /* Speeds and modes.  */
67                         r |= (1 << 13) | (1 << 14);
68                         r |= (1 << 11) | (1 << 12);
69                         r |= (1 << 5); /* Autoneg complete.  */
70                         r |= (1 << 3); /* Autoneg able.  */
71                         r |= (1 << 2); /* link.  */
72                         break;
73                 case 5:
74                         /* Link partner ability.
75                            We are kind; always agree with whatever best mode
76                            the guest advertises.  */
77                         r = 1 << 14; /* Success.  */
78                         /* Copy advertised modes.  */
79                         r |= phy->regs[4] & (15 << 5);
80                         /* Autoneg support.  */
81                         r |= 1;
82                         break;
83                 case 18:
84                 {
85                         /* Diagnostics reg.  */
86                         int duplex = 0;
87                         int speed_100 = 0;
88  
89                         if (!phy->link)
90                                 break;
91  
92                         /* Are we advertising 100 half or 100 duplex ? */
93                         speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
94                         speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
95  
96                         /* Are we advertising 10 duplex or 100 duplex ? */
97                         duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
98                         duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
99                         r = (speed_100 << 10) | (duplex << 11);
100                 }
101                 break;
102  
103                 default:
104                         r = phy->regs[regnum];
105                         break;
106         }
107         D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
108         return r;
109 }
110  
111 static void
112 tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
113 {
114         int regnum;
115  
116         regnum = req & 0x1f;
117         D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
118         switch (regnum) {
119                 default:
120                         phy->regs[regnum] = data;
121                         break;
122         }
123 }
124  
125 static void
126 tdk_init(struct qemu_phy *phy)
127 {
128         phy->regs[0] = 0x3100;
129         /* PHY Id.  */
130         phy->regs[2] = 0x0300;
131         phy->regs[3] = 0xe400;
132         /* Autonegotiation advertisement reg.  */
133         phy->regs[4] = 0x01E1;
134         phy->link = 1;
135  
136         phy->read = tdk_read;
137         phy->write = tdk_write;
138 }
139  
140 struct qemu_mdio
141 {
142         /* bus.  */
143         int mdc;
144         int mdio;
145  
146         /* decoder.  */
147         enum {
148                 PREAMBLE,
149                 SOF,
150                 OPC,
151                 ADDR,
152                 REQ,
153                 TURNAROUND,
154                 DATA
155         } state;
156         unsigned int drive;
157  
158         unsigned int cnt;
159         unsigned int addr;
160         unsigned int opc;
161         unsigned int req;
162         unsigned int data;
163  
164         struct qemu_phy *devs[32];
165 };
166  
167 static void
168 mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
169 {
170         bus->devs[addr & 0x1f] = phy;
171 }
172  
173 #ifdef USE_THIS_DEAD_CODE
174 static void
175 mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
176 {
177         bus->devs[addr & 0x1f] = NULL; 
178 }
179 #endif
180  
181 static void mdio_read_req(struct qemu_mdio *bus)
182 {
183         struct qemu_phy *phy;
184  
185         phy = bus->devs[bus->addr];
186         if (phy && phy->read)
187                 bus->data = phy->read(phy, bus->req);
188         else
189                 bus->data = 0xffff;
190 }
191  
192 static void mdio_write_req(struct qemu_mdio *bus)
193 {
194         struct qemu_phy *phy;
195  
196         phy = bus->devs[bus->addr];
197         if (phy && phy->write)
198                 phy->write(phy, bus->req, bus->data);
199 }
200  
201 static void mdio_cycle(struct qemu_mdio *bus)
202 {
203         bus->cnt++;
204  
205         D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
206                 bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
207 #if 0
208         if (bus->mdc)
209                 printf("%d", bus->mdio);
210 #endif
211         switch (bus->state)
212         {
213                 case PREAMBLE:
214                         if (bus->mdc) {
215                                 if (bus->cnt >= (32 * 2) && !bus->mdio) {
216                                         bus->cnt = 0;
217                                         bus->state = SOF;
218                                         bus->data = 0;
219                                 }
220                         }
221                         break;
222                 case SOF:
223                         if (bus->mdc) {
224                                 if (bus->mdio != 1)
225                                         printf("WARNING: no SOF\n");
226                                 if (bus->cnt == 1*2) {
227                                         bus->cnt = 0;
228                                         bus->opc = 0;
229                                         bus->state = OPC;
230                                 }
231                         }
232                         break;
233                 case OPC:
234                         if (bus->mdc) {
235                                 bus->opc <<= 1;
236                                 bus->opc |= bus->mdio & 1;
237                                 if (bus->cnt == 2*2) {
238                                         bus->cnt = 0;
239                                         bus->addr = 0;
240                                         bus->state = ADDR;
241                                 }
242                         }
243                         break;
244                 case ADDR:
245                         if (bus->mdc) {
246                                 bus->addr <<= 1;
247                                 bus->addr |= bus->mdio & 1;
248  
249                                 if (bus->cnt == 5*2) {
250                                         bus->cnt = 0;
251                                         bus->req = 0;
252                                         bus->state = REQ;
253                                 }
254                         }
255                         break;
256                 case REQ:
257                         if (bus->mdc) {
258                                 bus->req <<= 1;
259                                 bus->req |= bus->mdio & 1;
260                                 if (bus->cnt == 5*2) {
261                                         bus->cnt = 0;
262                                         bus->state = TURNAROUND;
263                                 }
264                         }
265                         break;
266                 case TURNAROUND:
267                         if (bus->mdc && bus->cnt == 2*2) {
268                                 bus->mdio = 0;
269                                 bus->cnt = 0;
270  
271                                 if (bus->opc == 2) {
272                                         bus->drive = 1;
273                                         mdio_read_req(bus);
274                                         bus->mdio = bus->data & 1;
275                                 }
276                                 bus->state = DATA;
277                         }
278                         break;
279                 case DATA:                     
280                         if (!bus->mdc) {
281                                 if (bus->drive) {
282                                         bus->mdio = !!(bus->data & (1 << 15));
283                                         bus->data <<= 1;
284                                 }
285                         } else {
286                                 if (!bus->drive) {
287                                         bus->data <<= 1;
288                                         bus->data |= bus->mdio;
289                                 }
290                                 if (bus->cnt == 16 * 2) {
291                                         bus->cnt = 0;
292                                         bus->state = PREAMBLE;
293                                         if (!bus->drive)
294                                                 mdio_write_req(bus);
295                                         bus->drive = 0;
296                                 }
297                         }
298                         break;
299                 default:
300                         break;
301         }
302 }
303  
304 /* ETRAX-FS Ethernet MAC block starts here.  */
305  
306 #define RW_MA0_LO         0x00
307 #define RW_MA0_HI         0x01
308 #define RW_MA1_LO         0x02
309 #define RW_MA1_HI         0x03
310 #define RW_GA_LO          0x04
311 #define RW_GA_HI          0x05
312 #define RW_GEN_CTRL       0x06
313 #define RW_REC_CTRL       0x07
314 #define RW_TR_CTRL        0x08
315 #define RW_CLR_ERR        0x09
316 #define RW_MGM_CTRL       0x0a
317 #define R_STAT            0x0b
318 #define FS_ETH_MAX_REGS   0x17
319  
320 struct fs_eth
321 {
322         VLANClientState *vc;
323         int ethregs;
324  
325         /* Two addrs in the filter.  */
326         uint8_t macaddr[2][6];
327         uint32_t regs[FS_ETH_MAX_REGS];
328  
329         struct etraxfs_dma_client *dma_out;
330         struct etraxfs_dma_client *dma_in;
331  
332         /* MDIO bus.  */
333         struct qemu_mdio mdio_bus;
334         unsigned int phyaddr;
335         int duplex_mismatch;
336  
337         /* PHY.  */
338         struct qemu_phy phy;
339 };
340  
341 static void eth_validate_duplex(struct fs_eth *eth)
342 {
343         struct qemu_phy *phy;
344         unsigned int phy_duplex;
345         unsigned int mac_duplex;
346         int new_mm = 0;
347  
348         phy = eth->mdio_bus.devs[eth->phyaddr];
349         phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
350         mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
351  
352         if (mac_duplex != phy_duplex)
353                 new_mm = 1;
354  
355         if (eth->regs[RW_GEN_CTRL] & 1) {
356                 if (new_mm != eth->duplex_mismatch) {
357                         if (new_mm)
358                                 printf("HW: WARNING "
359                                        "ETH duplex mismatch MAC=%d PHY=%d\n",
360                                        mac_duplex, phy_duplex);
361                         else
362                                 printf("HW: ETH duplex ok.\n");
363                 }
364                 eth->duplex_mismatch = new_mm;
365         }
366 }
367  
368 static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
369 {
370         struct fs_eth *eth = opaque;
371         uint32_t r = 0;
372  
373         addr >>= 2;
374  
375         switch (addr) {
376                 case R_STAT:
377                         r = eth->mdio_bus.mdio & 1;
378                         break;
379         default:
380                 r = eth->regs[addr];
381                 D(printf ("%s %x\n", __func__, addr * 4));
382                 break;
383         }
384         return r;
385 }
386  
387 static void eth_update_ma(struct fs_eth *eth, int ma)
388 {
389         int reg;
390         int i = 0;
391  
392         ma &= 1;
393  
394         reg = RW_MA0_LO;
395         if (ma)
396                 reg = RW_MA1_LO;
397  
398         eth->macaddr[ma][i++] = eth->regs[reg];
399         eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
400         eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
401         eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
402         eth->macaddr[ma][i++] = eth->regs[reg + 1];
403         eth->macaddr[ma][i++] = eth->regs[reg + 1] >> 8;
404  
405         D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
406                  eth->macaddr[ma][0], eth->macaddr[ma][1],
407                  eth->macaddr[ma][2], eth->macaddr[ma][3],
408                  eth->macaddr[ma][4], eth->macaddr[ma][5]));
409 }
410  
411 static void
412 eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
413 {
414         struct fs_eth *eth = opaque;
415  
416         addr >>= 2;
417         switch (addr)
418         {
419                 case RW_MA0_LO:
420                 case RW_MA0_HI:
421                         eth->regs[addr] = value;
422                         eth_update_ma(eth, 0);
423                         break;
424                 case RW_MA1_LO:
425                 case RW_MA1_HI:
426                         eth->regs[addr] = value;
427                         eth_update_ma(eth, 1);
428                         break;
429  
430                 case RW_MGM_CTRL:
431                         /* Attach an MDIO/PHY abstraction.  */
432                         if (value & 2)
433                                 eth->mdio_bus.mdio = value & 1;
434                         if (eth->mdio_bus.mdc != (value & 4)) {
435                                 mdio_cycle(&eth->mdio_bus);
436                                 eth_validate_duplex(eth);
437                         }
438                         eth->mdio_bus.mdc = !!(value & 4);
439                         break;
440  
441                 case RW_REC_CTRL:
442                         eth->regs[addr] = value;
443                         eth_validate_duplex(eth);
444                         break;
445  
446                 default:
447                         eth->regs[addr] = value;
448                         D(printf ("%s %x %x\n",
449                                   __func__, addr, value));
450                         break;
451         }
452 }
453  
454 /* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
455    filter dropping group addresses we have not joined.  The filter has 64
456    bits (m). The has function is a simple nible xor of the group addr.  */
457 static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
458 {
459         unsigned int hsh;
460         int m_individual = eth->regs[RW_REC_CTRL] & 4;
461         int match;
462  
463         /* First bit on the wire of a MAC address signals multicast or
464            physical address.  */
465         if (!m_individual && !sa[0] & 1)
466                 return 0;
467  
468         /* Calculate the hash index for the GA registers. */
469         hsh = 0;
470         hsh ^= (*sa) & 0x3f;
471         hsh ^= ((*sa) >> 6) & 0x03;
472         ++sa;
473         hsh ^= ((*sa) << 2) & 0x03c;
474         hsh ^= ((*sa) >> 4) & 0xf;
475         ++sa;
476         hsh ^= ((*sa) << 4) & 0x30;
477         hsh ^= ((*sa) >> 2) & 0x3f;
478         ++sa;
479         hsh ^= (*sa) & 0x3f;
480         hsh ^= ((*sa) >> 6) & 0x03;
481         ++sa;
482         hsh ^= ((*sa) << 2) & 0x03c;
483         hsh ^= ((*sa) >> 4) & 0xf;
484         ++sa;
485         hsh ^= ((*sa) << 4) & 0x30;
486         hsh ^= ((*sa) >> 2) & 0x3f;
487  
488         hsh &= 63;
489         if (hsh > 31)
490                 match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
491         else
492                 match = eth->regs[RW_GA_LO] & (1 << hsh);
493         D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
494                  eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
495         return match;
496 }
497  
498 static int eth_can_receive(VLANClientState *vc)
499 {
500         return 1;
501 }
502  
503 static ssize_t eth_receive(VLANClientState *vc, const uint8_t *buf, size_t size)
504 {
505         unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
506         struct fs_eth *eth = vc->opaque;
507         int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
508         int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
509         int r_bcast = eth->regs[RW_REC_CTRL] & 8;
510  
511         if (size < 12)
512                 return -1;
513  
514         D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
515                  buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
516                  use_ma0, use_ma1, r_bcast));
517  
518         /* Does the frame get through the address filters?  */
519         if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
520             && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
521             && (!r_bcast || memcmp(buf, sa_bcast, 6))
522             && !eth_match_groupaddr(eth, buf))
523                 return size;
524  
525         /* FIXME: Find another way to pass on the fake csum.  */
526         etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
527  
528         return size;
529 }
530  
531 static int eth_tx_push(void *opaque, unsigned char *buf, int len)
532 {
533         struct fs_eth *eth = opaque;
534  
535         D(printf("%s buf=%p len=%d\n", __func__, buf, len));
536         qemu_send_packet(eth->vc, buf, len);
537         return len;
538 }
539  
540 static void eth_set_link(VLANClientState *vc)
541 {
542         struct fs_eth *eth = vc->opaque;
543         D(printf("%s %d\n", __func__, vc->link_down));
544         eth->phy.link = !vc->link_down;
545 }
546  
547 static CPUReadMemoryFunc * const eth_read[] = {
548         NULL, NULL,
549         &eth_readl,
550 };
551  
552 static CPUWriteMemoryFunc * const eth_write[] = {
553         NULL, NULL,
554         &eth_writel,
555 };
556  
557 static void eth_cleanup(VLANClientState *vc)
558 {
559         struct fs_eth *eth = vc->opaque;
560  
561         cpu_unregister_io_memory(eth->ethregs);
562  
563         qemu_free(eth->dma_out);
564         qemu_free(eth);
565 }
566  
567 void *etraxfs_eth_init(NICInfo *nd, target_phys_addr_t base, int phyaddr)
568 {
569         struct etraxfs_dma_client *dma = NULL; 
570         struct fs_eth *eth = NULL;
571  
572         qemu_check_nic_model(nd, "fseth");
573  
574         dma = qemu_mallocz(sizeof *dma * 2);
575         eth = qemu_mallocz(sizeof *eth);
576  
577         dma[0].client.push = eth_tx_push;
578         dma[0].client.opaque = eth;
579         dma[1].client.opaque = eth;
580         dma[1].client.pull = NULL;
581  
582         eth->dma_out = dma;
583         eth->dma_in = dma + 1;
584  
585         /* Connect the phy.  */
586         eth->phyaddr = phyaddr & 0x1f;
587         tdk_init(&eth->phy);
588         mdio_attach(&eth->mdio_bus, &eth->phy, eth->phyaddr);
589  
590         eth->ethregs = cpu_register_io_memory(eth_read, eth_write, eth);
591         cpu_register_physical_memory (base, 0x5c, eth->ethregs);
592  
79 roytam 593         eth->vc = nd->vc = qemu_new_vlan_client(NET_CLIENT_TYPE_NIC,
594                                                 nd->vlan, nd->netdev,
77 roytam 595                                                 nd->model, nd->name,
74 roytam 596                                                 eth_can_receive, eth_receive,
79 roytam 597                                                 NULL, NULL, eth_cleanup, eth);
74 roytam 598         eth->vc->opaque = eth;
599         eth->vc->link_status_changed = eth_set_link;
600  
601         return dma;
602 }